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1 Introduction

This paper examines the behavior of a simple hook in the context of automated
cranes. The hook end eector is suspended from a winch attached to a gantry,
which can be controlled programmatically. The hook is underactuated. It is
useful to guarantee certain behavior of an end eector given a control scheme.
In our case the desired behavior is to orient correctly with respect to a target
rod, guaranteeing that the crane can then safely pick up the target rod.

2 Problem Denition

Physical Components

Here we dene the components of the system:
1. The target rod: This is the stationary object we are attempting to

hook onto. In reality, this may be just a small part of a larger payload, posi-
tioned anywhere in the x-y plane of the world frame. In this analysis, it will be
approximated as an innitely thin, innitely long line.

2. The coordinate system: Our analysis will be done in the xed test frame.
The y-axis of this frame is dened by the target rod. The z-axis is parallel with
the z-axis of the world frame. The position of the x-axis is unimportant.

3. The gantry: In reality, this is a chassis suspended above the ground
that can move in 2 dimensions. Since our control algorithm will only move it
perpendicular to the target rod, we can model it instead as a cart that moves
along the x-axis. We will say the the gantry is suspended at height zgantry in
the test frame, and that it always stays on the x-axis (ygantry = 0).

4. The hook: This is modeled as an innitely thin shape as described in
gure 1. A coordinate system hook frame is attached to point A. The hook’s
center of mass is at point E in the gure, l below point A in the hook frame.
Segments AB and CD have length w. The hook is suspended from the gantry
by a line of length L = zgantry − l/2.

Success Condition

We now dene the success condition of the hook system:
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Figure 1: The grey object represents the gantry crane, xed to the world frame.
The red object is an example payload with a target rod and the test frame xed
to it.
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Figure 2: Left: The CAD for a physical hook used in experiments. Right: an
innitely thin approximation of the physical device.
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Mechanically, we care that if the winch is retracted, the hook will not slip
o the target rod. This condition occurs if the target rod is between the two
vertical parts of the hook; More mathematically, if the y-axis of the test frame
intersects the ABCD plane. A specic case of this condition occurs if segment
BC is in contact with the target rod and the rotation of the hook around the
z-axis is 0. Even more specically, this condition is true if the hook frame is at
position xhook = w, zhook ∈ (0, l) with the same orientation as the test frame.
Lets say that the transform of the hook frame has error in each of its 6 degrees of
freedom: δx, δy, δz, δθx, δθy, δθz. The system has reached its victory condition
when each of these errors reaches zero.

3 Algorithmic Overview

Initial Conditions and Assumptions

1. We assume that the system is quasi-static; that is, bodies are always in the
position of lowest reachable potential energy.

2. The gantry starts in a position such that the hook cannot touch the target
rod. We will say xgantry = −∞.

3. The hook frame starts directly below the gantry:
x⃗hook = (xgantry, 0, zgantry − L).

4. The hook can move freely in 3D space, with the condition that it is at
most L away from the gantry at all times.

The Algorithm

The gantry moves in the x̂ direction until the center of mass is no longer directly
below the gantry, or until the gantry is at position xgantry = w. It waits
until neither of these conditions is true and repeats. The program terminates
immediately when the success condition is met.

Resolution of errors

Before the algorithm begins, the hook will orient such that it is in the position
of lowest potential energy; specically, the center of mass will be directly below
the gantry, as low as it can go. Thus, δz, δy, δθx, and δθy all become 0.

We are left with two errors to resolve: δx, and δθz. The control algorithm
will now resolve both at the same time.

The control algorithm now moves the system in the positive x direction.
Because the system is quasi-stable, it will not pause until hook segment BC
contacts the target rod; no other stimulus exists in the world, and BC is the
only segment at the right height to hit the target rod. There are now three
cases to consider:

a. δθz = 0. This is the victory condition; the hook is in the right orientation
and the program exits.
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b. δθz = π. This is the failure condition; The hook is now perfectly balanced
in an inadmissable position. This condition is also unstable (see case c.) and
has only innitesimal probability of occurring. It is discounted for this analysis.

c. δθz ∈ (−π, pi)/0. This is the most likely case. This case implies geomet-
rically that xgantry < w. When the gantry begins moving again, the contact
between segment BC and the rigid target rod will impose a torque on the hook
positively proportional to w · sin δθz; The hook will rotate such that δθz ap-
proaches 0.

This demonstrates that if the hook is in case c., it will tend toward case a.,
and must necessarily reach it once xgantry = w.

4 Potential Analysis

We can also examine this problem through the lens of potential. To explain
this process, consider a 3D double pendulum: a mass hangs from a rigid rod
B, which in turn hangs from another rigid rod A. If the mass has a known
orientation, then this system has 5 degrees of freedom: 2 for the pitch and yaw
of rod A, and 3 for the orientation of the ball joint connecting rods A and B.
How would we nd the equilibrium positions of such a system? For this system
the answer is trivial, but we will explore more complex ways of answering the
question, so that we may use these same techniques on our actual system.

One way to demonstrate that a system tends toward a point of interest
p⃗ is to assume quasistatic behavior and argue that p⃗ is a global minimum of
the potential function. We can assert it is an equilibrium point by creating an
expression for the potential energy of the system as a function of the generalized
coordinates. The gradient of the potential well must be zero evaluated at p⃗ for p⃗
to be an equilibrium point. Applying this process to the above example, we nd
that our expected equilibrium points are indeed also points of zero gradient in
the potential well. To conrm that point p⃗ is a global minimum requires some
geometric reasoning. In the case of the double pendulum, it can be seen that the
global minimum is the point at which the mass is lowest in space. To conrm
that the system tends toward point p⃗, we also need some understanding of the
surface of potential well. This is more dicult to arrive at. We will hand-wave
it away for the purposes of this analysis.

Consider now our actual system (we will examine the case were x = w).
We predict there to be only one equilibrium point that satises the contact
constraint, namely the position in which the hook is oriented straight down
and straight forward. We can also compute the potential for this system as a
function of four generalized coordinates; like the double pendulum, this system
would have ve degrees of freedom, but one is removed by the contact constraint.
This lets us solve for one of these coordinates analytically. We can now nd the
gradient of our potential curve evaluated at the point of interest p⃗. This process
was done in MATLAB, and intermediate steps show some pretty gross analytical
expressions which we will omit for brevity. In the end, evaluating the gradient at
our point of interest yeilded zero. We are condent that point p⃗ is an equilibrium
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point.

5 Discussion

Initial Alignment

To do this hooking algorithm practically requires identifying the location of the
target rod (or the payload it is attached to). This can be done in a number of
ways, but in our cases has been achieved with computer vision. A camera is
mounted to the gantry crane, and detects an April Tag mounted rigidly to the
target rod.

Failure Cases

The algorithm will fail if case b. does actually occur. Because physical objects
will not be innitely thin or innitely round, there is a non-zero, if low, prob-
ability that case b. occurs. This is, however, detectable, as when the crane
attempts to pick up the payload there will be no load on the cable and thus less
current through the motor. The current can be measured to determine if hook
was successful, and in case of failure, the system can reset and try again.

The algorithm may also fail if any of the assumptions it is built on are
incorrect. The most likely to be problematic is the assumption that the hook
can move freely in 3D space (except for the constraint that it is at most L away
from the gantry). Due to complex cable dynamics, it is possible that it does
not rotate freely around the cable.

It is also possible that the dynamics of the system are too fast to assume
quasi-stability. This can be resolved by slowing the algorithm entirely.
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